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The conjugate problem of natural convection in a horizontal cylindrical annulus 
is solved numerically, the solutions are compared with nonconjugate problems, 
and it is shown that the walls affect the heat transfer in the annular channel. 

Natural convection in annular channels formed by concentric cylinders is the subject of 
intensive research, owing to its widespread application in various engineering apparatuses, 
e.g., in solar energy converters, plasma accelerators, chemical technological equipment, 
plasmatrons, etc. [1-3]. 

It has been observed [4] that flows associated with natural convection in cylindrical 
annular channels can be divided into four basic types, depending only on the Grashof number 
and the reciprocal of the relative width of the annular channel. The transition from stable 
to unstable flow has been investigated over a wide range of reciprocal relative channel 
widths [5]. Custer and Shaughnessy [6] have studied the solution of the steady-state prob- 
lem as a function of the Grashof number, the channel width, and the type of temperature 
boundary conditions at the channel walls for fluids having a very low Prandtl number, using 
the technique of expanding the numbers Gr 0 and Pr in power series. The influence of the 
Prandtl number on natural-convection heat transfer in horizontal annular channels has been 
investigated [7]. A numerical study of natural convection in the channels between horizon- 
tal eccentric cylinders is reported in [8]. Turbulent natural convection in an annular 
channel is discussed in [9]. By far the greater majority of the above-cited papers give 
steady-state solutions of the problem; transient problems are covered in [10-13]. 

Increasing importance has been attached lately to the solution of conjugate natural- 
convection problems in closed spaces. Asymptotic methods are used in [14] to solve the 
steady-state conjugate problem of natural convection in an annular channel between a co- 
axial hollow cylinder and inner solid cylinder. A detailed bibliography pertaining to 
numerical, experimental, and theoretical work on naturalrconvection heat and mass transfer 
is given in [15]. 

The objective of the present study is to analyze the influence of the thickness and 
thermal conductivity of the wall on conjugate natural-convection heat transfer in a horizon- 
tal coaxial cylindrical channel. 

The geometry of the channel is characterized by the quantities ri, b' and r 0, c'. It 
is assumed that the angle ~ is measured relative to the vertical downward free-fall accelera- 
tion vector and varies within the interval 0~ ~ (Fig. I). Using a cylindrical coordi- 
nate system and neglecting friction heating, we write the dimensionless equations for the 
problem in the form 
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Fig. i. Geometry of the channel. 

Fig. 2. Influence of the channel wall thickness on the mean Nus- 
selt numbers in the course of relaxation to the steady state; 
the points correspond to the solution of the nonconjugate prob- 
lem (~u : 1.71), ~ = 0.4, a = 2.0. i) b = c = 0.4; 2) b = c = 
0.i; b = c = 0.01. 

where 

R = r / r i ;  ~ = f l r ~ / a ~ ;  ~; = VF/a,;  t = a , ~ / r ~  ; 

0 = ( T  - -  T o ) / ( T ,  - -  To); tt = v ~ r d a , ;  v = v~rda=;  

~t = a : l a , ;  Pr  = "vial; v = o ~ I O R ;  u = - -  R - ~ & p l a ~ ;  

Gr,  = g[3 ( T ~ "  To) r~/~2; V~ = O~/OR, + R - ~ a / o R  q_ R-~o~/a~. 

(5) 

We adopt the initial and boundary conditions 

u= D= ~ = ~)---- 0 I=0 2-- 0 at t~--- O, ( 6 )  

a01 a0~ 
= -- =~ c0-~---=---- 0 along (p= 0, ~, ( 7 )  

r = ar = 0 I 

01 = 0~, a01 = % 002 / for 
OR aN 

R=I, R=~, (8) 

01 ~ 1 fo r  R = 1 - -  b, 01 --~ 0 fo r  R = 1] -~ e. (9) 

The vorticity boundary condition at the walls is determined from Eq. (2): 

m = - -  a ~ r  (lO) 
The system of equations (1)-(4) and boundary conditions (8)-(10) involves parameters that 
are induced in the problem by the conjugation of the temperature fields at the fluid-wall 
boundary: 

i) the ratio of the thermal conductivities of the fluid and the wall ~ = ~2/%1; 

2) the ratio of the thermal diffusivities of the wall and the fluid a = al/a2; 

3) relative channel wall thicknesses b = b'/r i and c = c'/r i. 
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Fig. 3 Fig. 4 
Fig. 3. Influence of the ratio of the thermal conductivities of the fluid and chan- 
nel walls on the mean Nusselt numbers in the transient thermal convection regimel 
the points correspond to the solution of the nonconjugate problem, b = c = 0.2, a = 
2.0. I) ~ = 0.8; 2) 0.4; 3) 0.02. 

Fig. 4. Influence of the ratio of the thermal diffusivities of the channel walls 
and the fluid on the mean Nusselt numbers in the transient thermal convection re- 
gime, b = c ='0.2, ~ = 0.4. i) ~ = 2; 2) 500. 

The parameters Gri, Pr, ~, a, q, b, c in our work are varied between the following limits: 
200 ! Gri ! 38800; 0.02 J Pr ! 0.7; 0.02 ! ~ ! 0.8; 2 ! ~ ! 500; 1.5 J N J 5; 0.01 ! b J 0.4; 
0.01 < c < 0.4. 

The system of equations (1)-(4) with the initial conditions (6) and the boundary condi- 
tions (7)-(10) are solved numerically on an implicit finite-difference scheme by the method 
of alternating directions [16]. A 21 x 19 computing grid is used; it is uniform with res- 
pect to the angle ~ and is variable with respect to the radius R, the points becoming more 
closely spaced toward the walls. The convection terms in Eqs. (i) and (3) are represented by 
asymmetric first-order upwind-differencing equations [16]. 

We write the finite-difference analogs of the differential equations (1)-(4) for interior 
points: 

~:+,/= _m~: ~+~/2 o)~+,/= hi n n (Oh i@.l -- 
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(13) 

(14) 

(15) 

(16) 
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(18) 

The first- and second-order partial derivatives occurring in the boundary conditions (7), 
(8), (i0) are expressed in terms of the following relations in the interior approximation 
[16]. 

& _ - - 3 f o + 4 f , - - [ 2  + O ( h ~ ) ,  ( 1 9 )  

On 2h 
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On =O'f _ - -  7fo -4-2h,8]:,- f2 ~3 ( ~ 0 f )  o + 0 (h2), (20) 

where u = (% R); f = (u, ~, 01, 82). 

The temperature conjugation conditions (8) on the inner and outer cylinders are trans- 
formed into the respective difference equations 

n n n n 

Ol kf--Olkf--1 = ~ 02 ~1§ --  02 /~1 for ~---- 1, 0fh~ 0" 
= 2 hi, A R i - I  AR; 

on n 0~ h/ - -  0~ h/'--I = 0~ h]+l - -  0~h] for  R = 0. 
2 k] = 0: ki, % ARi-: ARj 

Equa t ions  (13) and (14) i n v o l v e  t he  r e l a x a t i o n  pa r ame te r  r which in our  work i s  chosen 
a c c o r d i n g  to  t he  c o n d i t i o n  

/ ARj 
e = rain J Aq~ }/r~. t 

(21) 

With the introduction of the parameter g the equation for the stream function (2) is trans- 
formed from an elliptic to a parabolic equation. 

The computational process for the system of equations (11)-(18) in a given time layer is 
as follows. First, Eqs. (Ii) and (12) are solved in succession by a double-sweep procedure, 
using the values of Ukl n, Vki n, 8=kl n, and ~ki n from the preceding time n; this operation 
makes it possible to determine the-values of-~he vorticity ~kj n+l at interior points of the 
annular channel. Then Eqs. (13) and (14) are solved at those same points by an iterative 
procedure with the application of separate double sweeps in the R and ~ directions and the 
boundary conditions (7) and (8) for @, whereupon the field of the stream functions is de- 
termined in the domain occupied by fluid. The iteration process is terminated upon satis- 
faction of the convergence test 

s+I _ .  s+~ 
u v ~ i  - -  I/! *a+ll) 10-a-  

The number of required iterations diminishes rapidly from 25-30 immediately after the 
start of the computations to 2-4 for the majority of the other time steps. The velocity 
fields are computed from the known @kj n+1 as follows: 

- -  ~ h ] - - I  . . + l  - -  ~ h + , i  § *~21]  ( 2 2 )  
hi = R/+I - -  R i - ~  ' uki  - -  2 R ; A ~  ' 

and t he  v o r t i c i t y  a t  t he  channe l  wa l l s  i s  computed a c c o r d i n g  to  Eq. (20) .  Then Eqs. (15) -  
(18) a re  s o l v e d  by means o f  t he  c o n j u g a t i o n  c o n d i t i o n s  (21) a c c o r d i n g  to  a double -sweep  pro-  
c edu re ,  and the temperature field is determined both at the walls and in the fluid, and the 
local Nusselt numbers for the surfaces of the inner and outer cylinders are determined ac- 
cording to the equations 

r 1t Nui = --ln01) k 
respectively. Finally, the expressions 

N--u~ = ~ 1  [ Nui dq~, 
0 

Nuo = - -  n In 01) L - ~  ] 

N-~o= 1 f - -  Nuo dq~ 
0 

(23) 

are used to compute the mean values of the Nusselt numbers for each cylinder. The above- 
indicated integrals are__evaluated numerically with the application__of Simpson's rule. The 
global Nusselt number Nu is determined as the arithmetic mean of Nu i and Nu 0. The computa- 
tion of one time layer is terminated at this juncture, and the computational process is 
repeated. 

The values of the thermophysical parameters X, p, and Cp at the fluid-wall boundaries 
are assumed to be equal to the arithmetic mean of their values in the two media. 

We have tested the reliability of the foregoing numerical algorithm by comparing the 
solutions obtained by several authors [5, 6, i0] for nonconjugate problems using the values 
of the parameters 
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1) P r = 0 , 7 ,  ~1--1,57, R a =  14420 [5]; 

2) P r=0 ,01 ,  r l = 5 ,  Gro=200 [6]; 

3a) P r = 0 , 7 ,  ~ = 1 . 5 ,  G r = 4 8 5 0  [101; 

3b) Pr = 0.7, ~ = 2 ,  Gr = (10000, 26 600, 38800)[10] 

with the analogous solutions obtained in the present study in the conjugate formulation as 
+ 0. Excellent agreement of the results is observed here for the flow structure and also 

for the temperature and velocity profiles. Indicating that the given numerical method is 
reliable and stable. 

Our main concern here is to analyze the variation of the heat-transfer characteristics 
in an annular channel as the ratios of the thermal conductivities and thermal diffusivities 
of the walls and fluid and the relative channel wall thicknesses are varied. The Prandtl 
number is taken equal to 0.7 (air) in the ensuing discussion, the Grashof number is equal 
to i0 ~, and the ratio of the diameters of the outer and inner cylinders is 2.0. The results 
of computations performed by the above-described method are shown in Figs.__2-4. It is evi- 
dent from Fig. 2 that in the steady state for b = c = 0.01 the value of Nu for the conjugate 
problem differs from its counterpart in the nonconjugate case by 0.04 (%2%), i.e., they 
practically coincide for both problems. But then for a wall thickness equal to 0.4, the dis- 
crepancy of Nu is appreciable, amounting to 0.98 (~57%). Moreover, the maximum of the func- 
tion Nu0(t) decreases considerably and gradually shifts to the right along the t axis as the 
channel wall thickness is increased from 0.01 to 0.4. 

Figure 3 shows the dependence of the solution on another conjugation parameter ~ for ~ = 
2.0 and b = c = 0.2. The steady-state data lead to the assertion that allowance for the finite 
thickness of the channel walls a__nnd conjugation of the temperature fields at the fluid-wall 
boundary decreases the number Nu by i/1.92___in the transition from ~ = 0.02 to % = 0.8. For 

= 0.02 the mean values of the criterion Nu for the conjugate and the nonconjugate problems 
differ by 2%. 

The parameter a affects the heat-transfer process in the channel only as the solution 
approaches the steady state, as illustrated in Fig. 4. This influence is so slight, even 
with a 250-fold increase in ~, that it can in all probability be neglected. For the apecial 
case under consideration, where Gr i = i0,000, Pr = 0.7, and N = 2.0, it is found that the 
channel walls and the fluid can be strongly coupled in the thermal sense. 

Thus, the common assumption in simplified thermal computations, that the heat-transfer 
coefficient is independent of the thickness and thermophysical properties of the walls, is 
not always justified, particularly in the case of a low thermal conductivity or large rela- 
tive thickness of the channel walls, when the problem must be treated only in the conjugate 

formulation. 

NOTATION 

a:, a~, thermal conductivities of the wall and fluid, respectively; ~ = a:/a2; w, time; 
t, dimensionless time; b', c', wall thicknesses of inner and outer cylinders; b, c, dimen- 
sionless wall thicknesses of inner and outer cylinders; g, free'fall acceleration; Gri, Gro, Gra- 
shof numbers calculated with respect to radii of the inner and outer cylinders; Nu, Nusselt 
number; N-~, mean Nusselt number; Pr, Prandtl number; Ra, Rayleigh number; r, ~, cylindrical 
coordinates; R, dimensionless radial coordinate; T, temperature; Vr, v~, radial and angular 
components of velocity; u, v, dimensionless radial and angular velocity components; ~, co- 
efficient of thermal expansion of fluid; n, ratio of radii of outer and inner cylinders; 8, 
dimensionless temperature; k I, k 2, thermal conductivities of wall and fluid; k = k2/k~; p, 
density of fluid; e, relaxation parameter; C, W, vorticity and stream function; ~, ~, dimen- 
sionless vorticity and stream function; ri/(r o - ri), reciprocal of the relative annular chan- 
nel width. Indices: i, inner cylinder; O, outer cylinder. 
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EXPERIMENTAL STUDY OF THE PROCESS OF ESTABLISHMENT 

OF PHOTOABSORPTION-INDUCED CONVECTION 

V. I. Zuev UDC 536.252 

The times required for establishing photoabsorption-induced convection in a 
cell containing an absorbing liquid by a vertically propagating laser beam 
are measured. The results obtained are compared with available theoretical 
estimates. 

I. The absorption of powerful laser radiation in an absorbing medium causes photoab- 
sorption-induced convection (PAC) to appear near the region of heating [i, 2]. The low 
threshold of PAC distinguishes it from other types of free convection. The laser beam is 
a unique, stationary, continuous, volume, penetrable source of heat. It has the charac- 
teristic feature that as a result of the thermal self-action in the absorbing medium the 
characteristics of the beam itself change. 

The thermalization time of the laser radiation, determined by the molecular absorption 
time of a radiation quantum in the medium (in this case a liquid) and by the collision time 
of the molecules, is obviously much shorter than the times characteristic for the appear- 
ance of PAC. The times for establishing different states of PAC in a liquid were deter- 
mined in [3, 4] (Pr ~ i): i) t v = D2/X for the case of weak (Pe ~ i, Re ~ i) and moderate 
(Pe ~ i, Re ~ i) convection; 2) t v = D/v for developed convection (Pe ~ I, Re ~ i). 

It was noted that as the intensity of the beam of heating radiation increases the pro- 
cess of establishing convective motion can acquire an oscillatory character. 

Experiments on photoabsorption-induced convection, induced by horizontal [3] and vertical 
[5] beams of laser radiation in a gas, have been performed. In so doing, however, the velo- 
cities of the convective flows were not measured, and the establishment of motion was judged 
from indirect data. 
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